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Numerical calculations were carried out to study the effect of forced, symmetric, 
longitudinal flow oscillations on the inherent, strongly antisymmetrical oscillations 
of a previously studied edgetone flow at a Reynolds number of 450. The flow consists 
of a two-dimensional jet issuing from a nozzle and impinging on a body with a 
wedge-shaped leading edge. The flow is assumed to be incompressible, laminar and 
two-dimensional, and a finite-difference vorticity/stream-function formulation of the 
Navier-Stokes equations is employed. Three cases were considered with various 
combinations of forcing frequency and amplitude. It was found that for the two cases 
with large forcing amplitudes, the naturally dominant flow frequencies lock-in to the 
forcing frequency and its harmonics. In the third case the forcing amplitude was 
smaller and lock-in was not observed but the forced oscillations still had a significant 
impact on the flow. Mode competition between symmetric and antisymmetric modes 
is discussed for the three cases along with the manner in which the jet vortical 
structure is altered as a function of time and space. Results for all three cases are 
presented in the form of computer drawn equivorticity lines and plots of frequency 
spectra for the jet oscillations and for the pressure on the wedge. 

1. Introduction 
Recently edgetone flows, which involve the impingement of a planar jet upon an 

edge, have been studied experimentally in water by Lucas & Rockwell (1984) and 
computationally, for an incompressible fluid, e.g. water, by Ohring (1986). Earlier, 
theoretical investigations were performed by Powell ( 1961). 

Experimental investigations have been conducted to study the effects of forcing 
on free jets. Rockwell (1971) presented a survey of earlier experimental investigations 
of forced small-amplitude periodic disturbances (typically acoustic) applied to 
two-dimensional and axisymmetric-free jets in both air and water. This survey also 
included earlier experimental ilivestigations of the unforced edgetone as well as forced 
attached and reattaching jet flows. It focused on determining the most effective 
frequency for producing a large-scale change in the mean velocity and fluctuating 
velocity distributions of the jet. 

The survey paper of Ho & Huerre (1984) (hereinafter referred to as HH) presents 
results for flows involving the forcing (typically acoustic) of a single free shear layer. 

Recently, Staubli & Rockwell (1987) experimentally studied the interaction of the 
planar jet with forced transverse oscillations of the leading edge in the edgetone 
configuration. They found that the jet oscillations synchronize with the frequency 
of the controlled edge oscillations for excitation frequencies close to those of the 
natural jet oscillations. 
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This paper presents a study of the effect of mechanically forced, symmetric, 
longitudinal incoming flow oscillations on the inherent, strongly antisymmetrical 
oscillations of the previous numerically studied edgetone flow at a Reynolds number 
of 450 described in Ohring (1986) (hereinafter referred to  as (0)). 

This previously computed unforced edgetone flow (referred to as ‘Re = 450 (from 
650)’ in (0) and henceforth referred to as the unforced case in this paper) had two 
major naturally occurring frequencies ; one representing the frequency of jet 
oscillation and the other representing the frequency of vortices shed from each of the 
jet shear layers. 

As in (0), numerical solutions are obtained using a finite-difference vorticity/ 
stream-function formulation of the Navier-Stokes equations. A numerical coordinate 
transformation is used that maps the physical space coordinates onto computational 
space coordinates upon which the numerical calculation is performed. 

Three cases with various combinations of forcing frequency and amplitude were 
studied. The results for all three cases are presented in the form of computer drawn 
and calculated flow vorticity contour lines, and computed spectra for the jet and for 
pressure at the wedge. 

An aim of the present study was t o  see if the flow for the three cases would lock-in 
to or be dominated by the forcing frequency with the naturally occurring frequencies 
being reduced or quenched. 

Another aim was to  investigate the mode competition expected to result between 
the forced symmetrical modes and the inherent, antisymmetrical modes of the 
jebedge system as well as to investigate the manner in which the jet vortical structure 
is altered as a function of time and space owing to the forcing for the three cases. 

2. Mathematical formulation and numerical method 
The mathematical formulation and geometry (figure 1) for the flows considered in 

this paper are identical with that given in (0) except for several modifications to the 
boundary conditions, which are described later in this section. The same scaling of 
the variables is employed here as in (0). The NavierStokes equations are written 
in vorticity-stream-function form and solved using a numerical mapping that maps 
the physical space coordinates (figure l a )  onto a computational space (figure l b )  
whose coordinates are not shown. The equations are then solved in computational 
space. 

I n  (0), a steady Couette flow was imposed at the upstream end of the channel 
(boundary 111, figure 1).  I n  this study, the forcing is applied by adding to  this Couette 
flow at the same upstream end of the channel (boundary I11 in figure l u )  a 
sinusoidally oscillating parallel flow with a prescribed frequency and amplitude. 

As the Couette flow is an exact solution of the steady Navier-Stokes equations for 
parallel flow, the oscillating parallel flow is an exact solution of the corresponding 
unsteady equations -/ 

-Px’ + (1) 
r, 

Ut ,  = - 
P 

with no-slip boundary conditions a t  the channel walls, 

S’ = 0 at y’ = -k+6 (2) 

(6 = channel width). The primes represent dimensional quantities. The constants p 
and v are the density and kinematic viscosity. The independent variables t ’ ,  x’, y’ 
are time and the horizontal and vertical Cartesian coordinates, respectively. The 
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(4 (4 

FIQURE 1.  Numerical coordinate transformation of physical space coordinate system (a)  onto 
computational space (coordinates not shown) (a). 

dependent variables ii’, j5’ are the horizontal velocity and pressure of the oscillating 
flow. 

It is assumed, according to  the analogous pipe-flow problem (Schlichting 1968, 
..,/ p. 419), that  - 

(3) 

(4) 

That is, the flow is assumed to  oscillate sinusoidally with prescribed frequency 
f = m/(27c) and amplitude A’ (a real number). 

Px‘ 
P 

- A’ exp (imt’), 

i i ’(y’,  t’) = g(y’) exp (imt’). 

Combining (3) and (4) with (1) leads to 

img A’ 
gy’y’ - v = - - V . 

Equations (2) and (4) result in 
g = 0 a t  y’ = &$6. 

The solution of ( 5 )  and (6) for g is 

(7) 
i - cos (y’( - im/v)i)/cos (i6( - im/v):) 

m 
g(y’) = -iA‘ 

The radical in (7) is evaluated using the principal branch of the logarithm, i.e. 

The real parts of (3) and (4) are retained, since (1) is linear, and the result is 

17 

..,I - 
-- px‘ - A’ cos (mt’), 

P 
(9) 

i i ’ (y ’ ,  t’) = G,(y’) cos (mt’) + [A’/m + G,(y’)] sin (mt’), (10) 
F L Y  184 
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and el(Q = cosh (5)  cos ( 5 ) ;  ~ ~ ( 5 )  = sinh (5) sin (6);) 
(12) 

e , ~ )  = cash (5)  sin (5) ; e4(5) = sinh (5)  cos (c), j 
with a = (g)’, D = 4[et(+~a)+ei(+Sa)l. (13) 

G’(y’, t ’ )  = -C&,(y’, t ’ ) ,  $’(y’, t ’ )  = -jC’(y’, t ’ )  dy’+ k. 

The vorticity G’ and stream function J’ for the oscillating forcing are obtained from 
(10) by differentiation and integration according to 

(14) 

The vorticity 0“’ is zero a t  the centreline, i.e. G‘(0, t’) = 0 and the integration constant 
k is taken to be zero so that $’(O, t ’ )  = 0. 

The following non-dimensionalization (identical with that in (0)) is now used : 

US $‘=Su$; .ill= UC; f j ’ = p v f j ;  Re=--. St =-  Uo“ G’ = _ .  
6 ’  V 

St 
t’ = -; (x’,y’) = 6(x,y), U ’ OS {I (15) 

where Re is the Reynolds number based on the average velocity U of the steady, base 
(Couette) flow. From the relation m =  2nf and (9), (13) and (15) the non- 
dimensionalization is completed with 

ay’ = y(St,,Ren): = y2y; iSa = y ;  mt’ = 2n(St0,)t, (16) 
A U2 A’ = -. 
S ’  

where A ,  y ,  y and t are non-dimensional. 
From (14) and making use of the non-dimensionalization of (15) and (16) in 

(10)-(13), one obtains the non-dimensional expressions for $(y, t ) ,  G(y, t )  and C(y, t) :  

$(y, t ,  = Cl[{G5(?/)+G6(y)} ‘OS (2nSto,t)+{-G3(y)+G4(y)} 

sin (2nSt0, t)] - C, y sin (2xSt0, t )  ; (1 7) 

$(Y, t )  = C~[{-G~(Y)+G~(Y)I  cos (2nSto,t)+{-GG,(y)-GG,(y)} sin (2xSt0,t)l; (18) 

C(y, t )  = C,[G,(y) cos (2nSt0, t )  + G,(y) sin (2nSt0, t)] + C, sin (2nSt0, t ) ,  (19) 
for -4 < y < i, where 

G3(y) = [e,(2yy)+e4(2yy)le,(y); G4(Y) = [e4(2yy)-ee,(2yy)le,(y); 

G&Y) = [e4(2yy)-e3(2yy)I el(?) ; G6(y) = [e3(2yy) +e4(2yy)I e,(y) ; 

GAY) = - e z ( 2 ~ ) e l ( y )  +e1(2yy)e,(y); 

with non-dimensional constants 

= -e1(2yy) el(?) -e,(2yy) e,(y), 

(21) 
2A . c - -  

SnSt,, Dy ’ 2nSt0, ’ xSt,, D ’ - nSt,, D ’ 
-4Ay c, = ~ . c,=----. A - A  c, = 
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In  (0), the incoming, steady, scaled Couette flow was given by 

@c(Y)  = -6YCi-W,, %(Y) = 12Y, U C ( Y )  = i-6Y2, (22)  

for -+ < y < 
the Couette flow was given by 

at boundary 111. The corresponding constant pressure gradient for 

(23 ) 

(In (0), the c subscript was dropped.) 
The mathematical formulation and geometry (figure l ) ,  for the flows considered 

in this paper, are identical with that given in (0), except for the following boundary 
conditions : 

- 12 
Pcx = Re' 

@(+,t;Re,A,St,,) = @C(:)+#(+,t;Re,A,St,,)) 
. a t  boundaries 1', I, 

= -g+@(&t;Re,A,St,,) 

@(-;, t ;Re,A,  St,,) = @c(-+)+$(-+,  t ;  Re, A ,  St,,)) 
a t  boundaries II', 11. 

=++#(-+,t;Re,A,St,,) 1 
Notation has been added to  indicate dependence on three prescribed flow parameters 
Re, A and St,,. 

It is important to know at what times the incoming flow 

u(y, t ; Re, A ,  St,,) = u,(y) +G(y, t ;  Re, A,  St,,) at boundary111 (25) 
achieves its maximum (or minimum) rate. 

These times can be found from the relation 

u,(O, t ; Re, A ,  St,,) = 0,  (26)  

which yields 

where the principal value of the inverse tangent is taken. Then 

t* = t, + &T (k integral) (28)  

are the times at which the incoming velocity profile achieves its maximum (or 
minimum) value a t  y = 0. Here T is the period of the forced oscillations T = l/St,,. 

The pressure gradient at boundary 111 (figure 1 )  is (from (9 )  and (23)) 

(29)  

Integrating (29)  from xo to  xrII, where xIII  is the value of x a t  boundary 111 and xo 
is an arbitrary value of x upstream of xI I I ,  and then setting p(z,,,, 1 ;  Re, A ,  St,,) = 0 
in this paper, we must have at xo 

- 12 
Re 

P&, t ;  Re, A ,  St,,) = P,,+F, = -- A cos (2xSt,, t ) .  

P(% t ; Re, A ,  St,,) = 12(xr11-xo)+A Re cos (27CStost)(XIII-x0). (30) 

I n  the laboratory, this value of pressure at x = xo and time t could be achieved with 
a pump operating with frequency St,,, with A and Re taken into account. The 

17.2 
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oscillatory component of the fluid pressure in the flow domain of figure 1 can be 
interpreted in this way. 

The numerical method used in this paper is identical with that used in (0). It should 
be emphasized that the flow within the channel, including the nozzle opening, as well 
as the flow in the entire domain of figure 1 (a )  is computed through numerical solution 
of the vorticity-stream-function formulation of the Navier-Stokes equations. 

3. Numerical results 
Three cases were considered in the present numerical study : 

(0 Re = 450, St,, = 0.045, A = 0.174; 

(ii) Re = 450, St,, = 0.135, A = 0.174; 

(iii) Re = 450, St,, = 0.135, A = 0.522. 

All three cases have Re = 450 and were started abruptly from the case denoted in 
(0) as Re = 450 (from 650) at t = 204.39 and then run out to t = 276.39. The following 
results of this section should be compared against the results for Re = 450 (from 650) 
in (0) which had no longitudinal forcing ( A  = 0) and which henceforth will be referred 
to as the unforced case. 

Figure 2 shows computed equivorticity contour-line plots for a typical cycle for 
this unforced case. In  figure 2 and in all the equivorticity contour plots throughout 
the present paper, equivorticity line values are 1 ,  f 2 ,  . . . . Negative equivorticity 
lines are dashed; positive ones are solid. However in regions of high grid-point 
density, the dashed lines appear solid. In  figure 2 vortices pertinent to the discussion 
are labelled, and in that figure and throughout the present paper, vortices shed from 
the jet shear layers, the wedge and the channel lips are defined as regions of vorticity 
with a local extremum. I n  figure 2, the jet sways above the wedge with jet shear-layer 
vortices a, a', b' from t = 140.4 to 148.4. The jet sways below the wedge with vortices 
a", aiii, b"' from t = 152.4 to 160.4 a t  which time a new cycle is starting. 

This unforced base case exhibits two major naturally occurring non-dimensional 
flow frequencies denoted as p = 0.1754 and l& = 0.0585 in (0) (which were obtained 
through spectral analysis) with non-dimensional time periods ta = 1/p = 5.7 and 
tia = 318 = 17.1 ,  respectively. The frequency 3 represents the frequency of one 
complete oscillation or flapping of the jet above and below the wedge (occurring every 
17.1 time units) and represents the frequency of vortices shed from either jet shear 
layer during a complete jet oscillation. The frequency can be viewed as a 
modulation due to jet shear-layer vortex formation and the subsequent interaction 
of these jet vortices among themselves and with the wedge, i.e. vortices a ,  a', b' a t  
t = 152.4 and vortices a", a"', biii at t = 160.4. (Three vortices were shed from either 
jet shear layer for a total of six vortices shed from both jet shear layers during a 
complete jet oscillation,) These two major frequencies l& and /3 were also found in 
laborat,ory experiments (Lucas & Rockwell 1984) using the same geometry as that  
of figure 1 (a)  for this Reynolds-number range. 

Case (i) was designed to study the effect of an incoming flow oscillation having a 
frequency St,, which is somewhat less (by 23.1 yo) than the naturally occurring jet 
oscillation frequency I&. I n  particular, it was desired to determine to what extent 
the overall edgetone flow would 'lock-in' to  St,,, i.e. to what extent St,, and its 
harmonics (integer multiples of St,,) would dominate or even eliminate ip and its 
harmonics. 
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FIGURE 2. Time sequence of vorticity contour plots for a flow cycle for the unforced case 
(referred to as Re = 450 (from 650) in (0)). 

Cases (ii) and (iii) were designed to study the effect of an incoming flow oscillation 
having a frequency St,, that is somewhat less (by 23.1 %) than the naturally occurring 
frequency B. Again it was desired to determine to what extent the overall edgetone 
flow would lock-in to St,,. The amplitude A of the forcing was varied from case (ii) 
to case (iii) to determine the effect of this parameter on lock-in. 

The choices of forcing frequency and amplitude for cases (i)-(iii) were arbitrary in 
the sense that the threshold values of forcing frequency and amplitude to produce 
lock-in for cases (i)-(iii) were not known in advance. 

However the forcing frequencies St,, selected here (compared to the natural 
frequency p) are analogous to those forcing frequencies ff (compared to f,) described 
in HH for studies of forcing a free single mixing or free single jet shear layer having 
a natural frequency of vortex formation f,. 

The vorticity dynamics for cases (i), (ii) and (iii) will be compared against that of 
the unforced edgetone case as regards vortex formation, pairing and amalgamation. 
This comparison will be guided by the vorticity dynamics of the forced cases of HH. 
However one should be aware that aside from the nature of the forcing, the edgetone 
flows considered here involve two jet shear layers that can interact with each other 
and with the wedge, compared to a single free shear layer emanating from a splitter 
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plate in HH without any impingement. Also the present paper uses symmetric (about 
the jet centreline) mechanical forcing compared to the acoustic forcing in HH. 
Mechanical forcing acts in a more straightforward way in the scnse that a large 
portion of the input energy is converted into instability waves. 

Mode competition between the symmetrical modes (due to the forcing) and the 
inherent, strongly antisymmetrical oscillations of the jet-edge system will also be 
discussed for cases (i)-(iii). 

Figure 3 shows the total incoming velocity profiles (defined by (25) and indicated 
by arrows) during a complete time period T = 1 /St,, of oscillation for the three cases. 
The constant Couette velocity profile, used in (0), is included for comparison with 
the magnitude of the forced longitudinal oscillation a t  boundary I11 in figure 1 (a ) .  
The ordinate from y = -0.5 to  0.5 can be thought of as boundary 111. The following 
convention will be adopted in this paper for cases (i)-(iii): for each period T of 
oscillation, a time variable to is defined in the interval [0, !PI. The maximum value 
of the total incoming velocity profile (at  y = 0) occurs when to  = 0 and the minimum 
value of the total incoming velocity profile (at y = 0) occurs when to = 4T. For all 
to (and t ) ,  the incoming velocity profile has a maximum at  y = 0 (the centre of the 
channel a t  boundary 111). Thus, in figure 3 (for each case), the incoming flow 
decelerates from a maximum when to = 0 through to = +T to  to = $T when the 
incoming flow is a minimum. From to = +T, the incoming flow accelerates through 
to = qT to a maximum a t  to = T.  Note that for case (iii), there is actually a small 
amount of backflow a t  the walls at boundary I11 when to  is near +T. 

Judging by the amplitudes displayed in figure 3, cascs (i) and (iii) would be expected 
to provide the greatest changes from the unforced case. The results verify this, 
although, as will be shown, there is substantial change in all three cases. Note that 
the amplitude of forced oscillation depends on both A and St,, as seen from the 
constants C, and C, of (21) occurring in (19) for S(y, t )  and therefore in (25) for the 
total incoming flow. 

The time t = 204.39 when all three cases (i)-(iii) were abruptly started from the 
unforced case corresponds to to = 0.943T, 0.342T, 0.342T for cases (i) ,  (ii) and (iii), 
respectively. 

3.1. Flow visualizations 
Figures 4 , 5  and 6 show computation results in the form of equivorticity lines a t  times 
separated by equal intervals for cases (i), ( i i)  and (iii),  respectively. Alongside each 
equivorticity contour picture values for to  are shown as well as for t so that one can 
refer easily to figure 3 when viewing these contour pictures. The leftmost end of the 
channel in the contour pictures is boundary I11 (in figure l a )  where the inflow is 
specified. I n  figures 4,5 and 6 vortices are labelled that are pertinent to  the discussion. 

Figure 4 shows equivorticity contour pictures for case (i) a t  times separated by 
equal intervals of 4.0. The period of the forced incoming flow oscillations is T = 22.22. 
Vortices labelled a ,  b and c refer respectively to the first, second, and third periods 
of length T considered. 

The first period is considered to start a t  t = 220.4. Then the jet is below the wedge 
with the vortices ai-aiii arranged in a pattern very similar to  the unforced edgetone 
case. These shear-layer vortices, except for ai, quick dissipate, from t = 224.4 to 
228.4, before they impinge on the wedge. Meanwhile, a t  t = 220.4, vortex aiv is 
forming a t  the upper channel lip just after the incoming flow has started to increase. 
For all cases (i)-(iii) vortices form a t  the channel lips as soon as the incoming flow 
begins to increase. In  addition to the newly formed vortex aiv, new vortices av and 
avi have formed in the jet at t = 224.4 and avii has formed at  t = 228.4. The jet sways 
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FIQURE 3. Total incoming horizontal velocity profiles (indicated by arrows) during a complete time 
period T of forced oscillation for (a) St,, = 0.045, A = 0.174, ( b )  St,, = 0.135, A = 0.174 and (c) 
St,, = 0.135, A = 0.522. The constant Couette velocity profile used in (0) is shown for comparison. 
The corresponding values t and to are shown near the top and bottom, respectively, of each velocity 
profile graph. 
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t = 216.4 
0.4837 
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FIGURE 4. For caption see facing page. 
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t = 256.4 t = 268.4 
0.283T 0.823T 

260.4 
0.4633 

264.4 
0.643T 

212.4 
0.003T 

216.4 
0.183T 

FIGURE 4. Time sequence of vorticity contour plots for St,, = 0.045, A = 0.174. 

to the upper side of the wedge during the interval between t = 224.4 and 236.4. The 
jet impinges on the wedge at t = 236.4 with vortices aiv, av and aVii arranged in a 
pattern closely resembling that of the unforced edgetone case. The jet then completes 
its oscillation cycle when it sways below the wedge and impinges at t = 240.4 with 
vortices b’, b” and biii. At t = 240.4, vortex b’ is inducing a vortex g of opposite sign 
at the wedge and the vortex pair b’-g can then be seen ‘shooting off’ the wedge at 
t = 244.4, and later times. This process has been observed in (0) and by Lucas & 
Rockwell (1984) and can be seen to occur for cases (i)-(iii) throughout figures 4, 5 
and 6. 

A t  t = 240.4, the second time period of length T is starting with vortex biv forming 
at the lower channel lip at  a time when the incoming flow has just started to increase. 
(The a,  b and c vortices have been similarly numbered to show correspondence 
between the cycles.) The jet sways slightly above the wedge and impinges head-on 
at the wedge at t = 252.4. A t  t = 256.4, with the incoming flow decelerating 
(decreasing), the jet is quite unstable with two extra vortices d’ and d”. This type 
of destabilization did not occur during the other computed time intervals when the 
incoming flow is decelerating (decreasing) (i.e. when t is in the intervals [228.4,236.4] 
and 1272.4, 276.41). In fact, during these time intervals, the jet vortices grow 
considerably and the jet stem lengthens. The jet then completes its oscillation cycle 
with the jet below the wedge at  t = 264.4 with vortices ci,  cii and ciii. The third cycle 
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bears a striking resemblance to the first cycle, i.e. compare the time interval t = 264.4 
to 276.4 with the time interval t = 220.4 to 232.4. These time intervals are extremely 
close to being 2T apart. 

To summarize for case (i): 
1. The major frequency of the flow for case (i), which is the frequency for one 

complete oscillation or flapping of the jet, is St,, = 0.045 (the frequency of the 
incoming flow oscillation). The period of oscillation is thus T x 22.22, an increase from 
tifl = 17.1 for the non-forced case. The jet oscillation for case (i) bears a resemblance 
to that of the unforced case except that  (a )  the jet oscillation frequency has been 
changed and locked into St,, = 0.045, and ( b )  there appear to be seven jet vortices 
per jet oscillation. These results will be borne out by the spectral analysis presented 
later in the paper which will also show the subjugation of the naturally occurring 
frequency $3 (and its harmonics) of the unforced case to the frequency St,, = 0.045. 
One can indeed say that lock-in has occurred for case (i). 

2.  Compared to  the unforced edgetone case, case (i) shows ( a )  earlier formation of 
jet shear-layer vortices, i.e. vortices aiv, biv and civ a t  t = 220.4, 244.4 and 268.4, 
respectively, ( b )  earlier (further upstream) development of larger vortices, i.e. vortices 
aiv, biv and civ at t = 232.4, 252.4 and 276.4, respectively, (c) earlier pairing of 
vortices, i.e. vortices aiV, aVii and vortices civ, cvii a t  t = 228.4 and 272.4, respectively 
and ( d )  earlier and larger promotion of vortex amalgamation and merging as for 
vortices aiv, av and aVii a t  t = 232.4, 236.4 and vortices civ, cv and cvii a t  t = 272.4, 
276.4. These results are analogous with those of the low-forcing-frequency cases of 
HH. Case (i) has a low forcing frequency St,, < +$ and a large forcing amplitude of 
oscillation which can be compared against analogous low-frequency-forcing cases in 
H H  with ff < g,,. These low-forced-frequency cases in H H  promoted multiple-vortex 
amalgamations and tended to shift vortex pairing upstream. Furthermore, by 
increasing the forcing level, the formation of the large vortices was shifted upstream. 

3. The inherent, strongly antisymmetrical oscillations of the jet-edge system 
apparently overtakes the forced symmetric mode not far downstream from the 
channel opening. The symmetric mode appears to dominate near the channel opening, 
i.e. a t  t = 224.4, 244.4, 248.4 and 268.4. 

4. The flow for case ( i )  is clearly periodic as is easily seen in figure 4, e.g. by 
comparing the flow a t  t = 232.4 with that a t  t = 276.4. However the flow is biased 
in the sense that the very large vortex amalgamations occur above the wedge during 
the few cycles shown in figure 4. This may very likely be due to  the greater abruptness 
of the start (compared to cases (ii) and (iii)) from the unforced case a t  a time 
corresponding to to = 0.943T when the symmetric incoming longitudinal flow oscil- 
lation at boundary 111 (figure 1 a) is almost a maximum (see figure 3). Presumably 
if many flow cycles could be computed, the flow would approach an unbiased 
equilibrium. Owing to  computer expense this is not possible a t  the present time. 

Figure 5 shows equivorticity contour pictures for a typical flow cycle for case (ii) 
a t  times separated by intervals of 2.0 (in contrast to 4.0 for case (i)). For case (ii) 
the time period for the forced incoming flow oscillation is T = 7.41 and the amplitude 
of oscillation is the smallest of the three cases considered (see figure 3). 

From t = 230.4 to 238.4, vortices ai, aii and aiii are shed from the jet shear layers 
and these vortices impinge on the wedge from t = 238.4 to 240.4. (Vortices such as 
di at t = 232.4 and dii a t  t = 236.4 are weak and dissipate very rapidly compared to 
the a vortices in figure 5 and will not be part of the discussion.) New vortices aiv, 
av and avi are shed from the jet shear layers from t = 240.4 to 246.4 with the vortices 
aiv and av impinging on the wedge a t  t = 248.4. At t = 248.4 a new cycle is beginning 
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FIGURE 5. Time sequence of vorticity contour plots for a flow cycle for St,, = 0.135, A = 0.174. 
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with vortices b’ and b” being shed from the jet. The cycle referred to is approximately 
18 time units long which is close to the time period tis = 17.1 for one complete 
naturally occurring oscillation of the jet for the unforced case. Thus the fundamental 
frequency of the non-forced case is little affected by the forcing of case (ii). Spectral 
analysis presented below will show $9 to be one of the dominant frequencies for case 
(ii). 

Impingement of the jet vortices on the wedge occurs at times t = 240.4 and 248.4, 
or approximately at  intervals of tis = 8.55 which is the time required for one-half of 
a naturally occurring complete jet oscillation and thus impingement for the unforced 
case. 

One of the striking features of case (ii) is the frequency of the vortices shed from 
the jet shear layers. Three vortices are shed per impingement or six vortices are shed 
from the jet shear layers approximately every tis so that the frequency of vortices 
shed from either shear layer is /3. Spectral analysis presented below will show that 
/3 = 0.1754, which is also very nearly equal to +St,, = 0.18, is the dominant frequency 
of the flow for case (ii) along a substantial portion of the jet. The frequency /3 was 
the second most dominant frequency (after @) for the unforced case. 

During times of decelerating (decreasing) incoming flow, the jet is especially 
unstable with vortices shed at times t = 232.4, 234.4, 240.4, 242.4, 246.4, 248.4, etc., 
i.e. when to is in (0,iT). During times of accelerating (increasing) incoming flow, the 
jet lengthens as seen a t  t = 230.4, 236.4, 238.4, etc., i.e. when to is in [tT, TI. 

Based on the flow visualization in figure 5,  case (ii) flow has not locked-in to the 
frequency St,, = 0.135 of the incoming flow although case (ii) flow has some 
substantial differences compared to the unforced case. 

To summarize for case (ii) : 
1 .  Case (ii) flow is similar to  the unforced case in the following important respects: 

(a) case (ii) has dominant frequencies /3, $, and ( b )  impingements occur with 
frequency v. 

2. Case (ii) flow differs from the unforced case in the following important respects: 
(a) jet shear-layer vortices are stronger and are shed further upstream nearer to  the 
channel nozzle, ( b )  the swaying of the jet is not easily discernible as the length of the 
jet stem varies considerably a t  different times, and (c) is a more dominant 
frequency. 

3. The formation of jet vortices further upstream compared to the unforced case 
is consistent with analogous results for forcing cases mentioned in HH for a single 
free shear layer when f p  x f, and the forcing level (or amplitude) is raised. (Case (ii) 
has < St,, analogous to  ff and /3 analogous to f,, i.e. $3 < St,, z /3.) As mentioned 
in HH, shear-layer vortices form further upstream as the forcing level is raised for 
these cases. 

4. The level of forcing amplitude for case (ii) is not great enough for the forced 
symmetric mode to  dominate the inherent, strongly antisymmetrical oscillations of 
the jet-edge system except for a weak hint of dominance very close to  the channel 
opening, i.e. at t = 230.4, 232.4, 238.4 and 240.4. 

Figure 6 shows equivorticity line pictures for a typical flow cycle for case (iii) at 
times separated by intervals of 2.0. Case (iii) differs from case (ii) only in that the 
incoming flow has a greater amplitude of oscillation (see figure 3). 

At t = 238.4, vortices ai, aii and aiii have already been shed. The intense vortices 
ai and aii of approximately equal strength were shed from the nozzle lips during 
2T < to < T, when the incoming flow is increasing, while vortex aiii has been shed from 
the jet further downstream. Vortices ai and aii grew as they were convected 
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FIGURE 6. Time sequence of vorticity contour plots for a flow cycle for St,, = 0.135, A = 0.522. 
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downstream. At t = 238.4, vortices ai and aii together with aiii give the appearance 
of a jet that  is swaying below the wedge a t  t = 238.4 before impinging a t  t = 240.4. 
Meanwhile a t  t = 240.4, new vortices aiv and av, of approximately equal strength, 
which previously shed from the nozzle lips during i T  < to < T, are growing as they 
are convected downstream. The jet with vortices aiv, av and avi sways above and then 
impinges on the wedge a t  t = 244.4. At this time, newly shed vortices itvii, aviii from 
the nozzle lips start to  grow and move downstream. The jet, with vortices avii, aviii 
and aix, then sways below the wedge a t  254.4 completing the cycle. 

To summarize for case (iii): 
1.  The entire jet appears to  be flapping, or oscillating, with a frequency approxi- 

mately equal to ?jSt,,, i.e. the time period of the jet oscillation is approximately 
2T = 14.82. This period can be verified with the comparison of pictures a t  t = 238.4 
and 254.4. 

2. The jet appears to be impinging a t  the wedge with frequency St,,, i.e. the time 
period of impingement is approximately T = 7.41. This period can be seen best by 
comparing pictures a t  t = 238.4 and 246.4. 

3. A total of six vortices form along the jet during each time interval of length 
2T = 14.82. Three vortices are shed from each side of the jet during each such interval 
which yields another dominant frequency, for individual vortex formation, of $St,,. 

4. The prior observations and other data presented later provide strong evidence 
that case (iii) flow has locked-in to  the dominant frequencies $!3tos, St,, and $St,,. The 
natural jet oscillation time period ti8 of the unforced case has been shortened to 2T 
under the influence of the large-amplitude forced oscillation of the incoming flow. 

5. Case (ii) flow with its smaller amplitude for the same forced frequency St,, 
appears to  be a transitional case between the unforced case and case (iii) flow. 

6. Vortices that are shed from the channel lips during case (iii) flow are more 
intense than any vortices that are shed from the jet during case (ii) flow. The increased 
forcing level of case (iii) compared to  case (ii) flow causes earlier and more intense 
jet vortex formation to occur right at the channel lips when compared to case (ii). 
This is consistent with the analogous forcing cases of HH with ff w f, when the forcing 
level is raised. (Case (iii) flow has a forced frequency St,, such that &3 < St,, w B.) 

7. The forced symmetric mode appears to  dominate over the inherent antisym- 
metrical oscillations of the jet-edge system for a considerable length downstream from 
the channel opening. This is especially noticeable at times t = 240.4, 242.4, 244.4, 
252.4 and 254.4. 

The following general remarks can be made about cases (i)-(iii) based on the 
previous discussion : 

(a) Lock-in of the jet-edge system to the forcing frequency St,, is achieved a t  both 
the lower and higher forcing frequencies of cases (i) and (iii), respectively, owing to 
the high level of forcing. Lock-in of the jebedge system to the higher forcing 
frequency of case (ii) is not achieved because of the relatively low level of forcing used 
(see figure 3). 

( b )  For cases (i)-(iii) an oscillating or ‘flapping’ jet is preserved in the jeb-edge 
system despite the forcing although the jet structure itself varies considerably among 
the three cases. 

(c) Earlier (further upstream) vortex formation, pairing and amalgamation occurs 
a t  the lower-forcing-frequency, high-forcing-level case (i) compared to the unforced 
case. I n  addition, the higher-forcing-frequency cases (ii) and (iii) also cause earlier 
jet vortex development compared to the unforced case with the earliest development 
occurring for the higher-forcing-level case (iii). These results agree with the analogous 
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forcing cases in HH where thc forcing was applied to  a free shear layer emanating 
from a splitter plate. 

(d )  The high forcing level of cases (i) and (iii) causes the forced symmetric mode 
to dominate over the inherent, strongly antisymmetrical oscillations of the jet-edge 
system near the channel opening. For case (iii), the symmetric mode domination 
extends a considerable distance downstream of the channel opening. No such 
symmetric domination exists for the lower forcing lcvel of case (ii). 

3.2. Numerical spectral results along the jet 
Figure 7 shows, for the unforced case, the growth of spectral-component amplitudes 
along the jet centreline (y = 0) for the transverse velocity (v velocity component). 
Note that $/3 and /3 are dominant. The harmonics of $3 that are shown are essentially 
those components that  are greater than 10% of the maximum for a measurable 
distance along the jet. L = 7.5 is the non-dimensional distance from the nozzle 
opening to the wedge tip. All distances have been scaled by the width of the channel. 
Figure 7 should be compared with figures 8, 9 and 10 for cases (i), (ii) and (iii), 
respectively. 

Cases (i)-(iii) occur from time t = 204.39 to 276.39. Therefore it was convenient to 
apply the Fourier analysis for all functional time histories considered in this paper 
to  a time interval from t = 209.99 to 276.39, which is 66.4 time units long. This time 
interval is very close to 66.66, which is three periods of the imposed flow oscillations 
for case (i) and nine periods for cases (ii) and (iii). Values were recorded during this 
time interval a t  166 uniformly spaced time levels. The Fourier analysis has been 
applied directly to the numerical data from the flow solution in the same manner as 
in (0). Filtering of the numerical data is avoided and is not justified because only 
a few flow cycles are available for the Fourier analysis due to the present expense 
of flow computation. 

Figure 8 (a-c) shows, for case (i), the pertinent spectral-component amplitudes A, 
for the transverse velocity v plotted versus x / L  (from 0 to 1.0) along the jet centreline. 
(The spectral component amplitudes for all time histories in this paper are as defined 
in (0).) All spectral components that  are not essentially zero have been considered 
in figure 8 (a-c) where the ordinates are of log type. Figure 8 ( a )  shows the spectral 
components for the frequency St,, and its superharmonics whereas figure 8 ( b )  shows 
components for 1$3 and its superharmonics. Figure 8 ( c )  shows all other non-zero 
components. For all cases (i)-(iii), the extra energy input into the flow due to  the 
mechanically forced longitudinal oscillations produces a significant increase in the 
number of non-zero spectral components well beyond that for the corresponding 
unforced edgetone flow as seen in figure 7 .  This increase in spectral components is 
significantly larger than the increase of spectral components that  might be expected 
to  result from acoustical forcing. Because a large number of computed flow cycles 
arc not available in the present paper for each of the cases (i), (ii) and (iii), owing 
to  the computer expense of flow computation, the Fourier analysis cannot be 
expected t o  resolve the additional increase of spectral components as well as if 
additional flow cycles were available. 

From figure 8(a-c) it  is clear that  the St,, component dominates all other 
components, which is in agreement with the previous discussion of the vorticity field. 
The dominance of St,, is for the entire distance between channel nozzle and wedge 
tip (from x / L  = 0 to 1.0). The shape of the curve for the St,, Component in figure 
8 ( a )  strongly resembles the curve for the &3 component for the unforced case (see 
figure 7) .  The shape of the 9 curve for the unforced case was also verified in the 
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FIQURE 7. Growth of spectral-component amplitudes of the transverse velocity v along the jet 
centreline (y = 0) for the unforced case. The components are: 0, M ;  A, v; 0, p;  x , tb; 0, v. 
(Graph vertical ordinates of log type.) 
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FIQURE 8. Growth of spectral-component amplitudes of the transverse velocity v along the jet 
centreline (y = 0) with St,, = 0.045, A = 0.174: for (a) multiples of St,,, ( b )  multiples of @, and 
(c) other frequencies. (Graph vertical ordinates of log type.) 



Edgetone Pow with forced longitudinal oscillations 523 

I 1 

0 0.2 0.4 0.6 0.8 1 .o 
XlL 

FIQURE 9. As for figure 8 but with St,, = 0.135, A = 0.174 and (a) multiples of +St,,,. 

laboratory by Lucas & Rockwell (1984). The St,, curve exhibits an initial growth 
region from x/L = 0 to 0.3, then has a region without growth from x /L  = 0.3 to 0.8, 
and finally a secondary growth region from 0.8 to 1 .O. This dominance of St,, is further 
evidence that the jet oscillation frequency which was $9 for the unforced case has 
changed to St,, in case (i). 

In figure 8 (b), the component $? and its multiples are greatly reduced in value from 
their levels for the unforced case and also significantly smaller than St,, and its 
multiples in figure 8(a) ,  providing further evidence that case (i) flow has locked-in 

In the discussion of the flow field for figure 4, i t  was noticed that during the three 
periods of forced oscillation, there was a passage of 23 vortices (including vortices 
d' and dii) which suggests a frequency of 3.83St0, for vortices shed from either jet 
shear layer., Figure 8 ( c )  shows that the second most dominant component for 
0.55 < x / L  < 0.9 is +$5't,,. Another major component is 4St,, for x / L  in [0.75, 0.901. 
These component frequencies are both near 3.84St0,. 

Figure 9 (a+) shows spectral-component amplitudes for the transverse velocity 
along the jet centreline (y = 0) for case (ii) flow. The dominant components are $ 
from x /L  = 0 to 0.4; /3 from xlL = 0.4 to 0.75 (note that /3 very nearly equals $St,,); 
i$3 from x/L = 0.75 to 0.95; and, and $St,, from 0.95 to 1.0. These results are in 
agreement with the discussion of vorticity patterns for case (ii) flow and show that 

to St,,. 
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FIQURE 10. As for figure 9 but with St,, = 0.135, A = 0.522. 

the dominant frequencies for this case are essentially the same as for the unforced 
flow. 

Figure 10 shows spectral amplitudes for case (iii). Before discussing these results 
i t  should be noted that the time interval upon which Fourier analysis was performed 
was extremely close to 9T so that  only multiples of $!5't,, could be computed and 
therefore the components for $!3to,, $St,, could not be computed. 

The dominant components for case (iii) are $3 = 0.0585 (which is approximately 
equal to $St,, = 0.06) from x/L = 0 to 0.4; ?St,, = 0.21 from x/L = 0.4 to approx- 
imately 0.90, and $3 from approximately x/L = 0.90 to 1 .O. The components $3 and 
?St,, are as close in value to  !jSt,, and $St,,, respectively, as could be obtained. These 
results are in agreement with the discussion of the vorticity field for case (iii) flow. 
The component St,, near x/L = 1 .O is not as large in figure 10 ( a )  as might be expected. 
Note that the component $St,, is also prominent near x / L  = 1.0. 

Figure 11 (a+) shows time-history traces of vorticity measured near to and away 
from the nozzle opening for the three cases. Four traces have a value of essentially 
zero and were measured at points 1 4  in figure 12(a) having (x,y)-coordinates 
( - 2.7437, & 3.2324), and ( - 1.7784, f 2.2685). Four other traces were measured at  
points 5-8 in figure 12 (a).  These four locations were symmetrically placed (two on 
either side of the jet centre) near the outer edge of the jet just downstream of the 
nozzle opening. All eight points are a t  the locations where similar records were taken 
in (0). 
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FIQURE 11 .  Vorticity time histories at selected locations near and away from the nozzle opening 
for (a) St,, = 0.045, A = 0.174, (b)  St,, = 0.135, A = 0.174, and (c) St,, = 0.135, A = 0.522. Point 
location, (2, y)-coordinates of point location, and plotting symbol for point locations 5-8 are, 
respectively, 5: (0.6850, 0.4375), 0 ; 6: (0.7052, 0.3125), x ; 7: (0.6850, -0.4375),#; 8: (0.7052, 
-0.3125), X. 

I n  figure 11 (a ) ,  the dominant frequency is St,,. This is expected from prior 
discussion of vorticity and velocity for case (i). For case (i), the two positive traces 
5 and 6 (although slightly out of phase with each other) are maximum positive when 
negative traces 7 and 8 are maximum negative. This clearly shows that the forced 
symmetric mode is dominant near the channel opening for case (i). This is unlike the 
unforced case of (0) where the inherent, strongly antisymmetric mode of the jet-edge 
system dominates. (The period til was the dominant period near the channel opening 
for the unforced case.) 

For cases (ii) and (iii) in figure 11, the dominant frequency is also St,,. Case (ii) 
shows that when positive traces 5 and 6 are minimum, negative traces 7 and 8 are 
most negative, clearly indicating that the inherent antisymmetric mode is dominant 
near the channel opening and that the forcing level is not strong enough to  overcome 
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FIGURE 12. (a) Schematic drawing (drawn to scale) indicating locations of points 1-8 (for figure 
11) in the physical domain and (a) locations 1-6 where wedge pressure spectra are taken. 

this domination. However, case (iii), like case (i), shows symmetric mode domination. 
This, when considered along with the magnitude of the vorticity oscillations for cases 
(i) and (iii) (compared to case (ii)) at the edges of the jet near the channel nozzle, 
provides further evidence of a lock-in effect to the frequency St,, for cases (i) and 
(iii). 

It is interesting to note that the jet oscillation frequencies $9 and &St,, ( ~ $ 9 )  for 
cases (ii) and (iii), respectively, which modulate the jet upstream near the channel 
nozzle and are the dominant frequencies there for the transverse velocity at  the jet 
centreline (figures 9 and lo), are not the dominant frequencies for the vorticity at  
the edges of the jet (figure 11 b, c). 

3.3. Numerical spectral results for the wedge pressure 
In figure 12 (b) are shown five locations corresponding to the distances 0,0.2475,0.75, 
1.5 and 3.0, respectively, measured along the lower wedge surface from the wedge 
tip. Pressure spectra were obtained a t  these locations, which are the same points for 
which similar data were presented in (0) for the unforced case. The dominant wedge 
pressure frequencies for the unforced case were @, g and $3 (with % most dominant 
and being the frequency of wedge impingement). 

Figures 13-15 show amplitudes of spectral components for the pressure at  the five 
locations for the three cases. (Spectral analysis for the upper wedge surface is expected 
to be the same as that of the lower surface.) For all three cases, the dominant 
component is St,, which is to be expected based on prior discussions of the flow 
visualizations, jet-spectral results, and the fact that in an incompressible fluid the 
dominant pressure oscillation disturbance for the incoming flow is transmitted 
immediately to the surrounding flow. 

For case (i), (figure 13) it was found that minima in the pressure-time traces near 
the tip occur when a jet vortex is passing underneath, i.e. at  times t = 216.4, 240.4, 
264.4 and at 256.4 (the largest minimum). The maximum in the pressure traces occurs 
a t  t = 250.0 when no jet vortex is underneath the wedge (see figure 4). 

In figure 14, for case (ii) which has relatively weak forcing, the components /3, v, 
@ are not prominent despite the fact that this might be expected from prior 
discussion. Instead, the components St,, and +St,, are most dominant. 
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FIGURE 13. Spectral-component amplitudes for the wedge preeaure at the five locations of figure 

12(b). St,, = 0.046, A = 0.174. 

In figure 15, for case (iii), the component St,, is huge. It was found that minima 
in the pressure traces occur at times of jet impingement that have a period equal to 
the period of the forced oscill&ion. The greatest minima occur at t = 245.6 and 268.4 
(see figure 6). 

The same comments apply to the wedge pressure spectral components as were 
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previously made for the jet spectral components concerning the unavailability of 
many computed flow cycles for the three cases (i), (ii) and (iii) which would have 
permitted better resolution by Fourier analysis of the increased number of spectral 
components due to the mechanical forcing. 
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4. Conclusions 
Numerical calculations have been performed to  study the effect of forced, 

symmetric, longitudinal, incoming flow oscillations on the inherent, strongly anti- 
symmetrical oscillations of the edgetone flow. These forced incoming flow oscillations 
are, in themselves, an analytic solution to  the time-dependent Navier-Stokes 
equations. The edgetone flow chosen to  be forced is at Reynolds number 450 (based 
on the channel width and average velocity of the unforced incoming Couette flow) 
and was computed previously in Ohring (1986) (denoted there as Re = 4.50 (from 650) 
and in the present paper as the unforced case). This unforced edgetone flow has two 
major naturally occurring frequencies : ;/I= 0.0585 representing the frequency of one 
complete jet oscillation and /3 = 0.1754 representing the frequency of vortices shed 
from either jet shear layer during a complete jet oscillation. These two naturally 
occurring frequencies were also found experimentally in the laboratory by Lucas & 
Rockwell (1984). 

Three cases with forcing were studied in the present paper. Case (i) had a forced 
incoming flow oscillation frequency St,, which was 23.08 yo less than +/3 and whose 
maximum (or minimum) incoming velocity a t  y = 0 (the channel centre) was 42.05 yo 
greater (or less) than the maximum steady, incoming Couette flow velocity at y = 0. 
Cases (ii) and (iii) had a forced incoming flow oscillation frequency 23.08 Yo less than 
/3. Case (ii) had a maximum (or minimum) incoming velocity a t  y = 0 that was 
13.65 yo greater (or less) than the maximum, steady incoming Couette flow velocity 
a t  y = 0 while the corresponding percentage for case (iii) was 40.96 Yo. 

Results for case (i) showed that the naturally occurring jet oscillation frequency 
@was changed and locked-in to the forced frequency St,,. I n  addition, it was found 
that 1$3 and its integer multiples were significantly diminished and that the dominant 
frequency of the flow was St,,, providing further evidence that the flow had locked-in 

Case (ii) results indicate a transition from the unforced case toward case (iii) flow. 
Case (ii) flow is similar to  the unforced case in that:  (a )  case (ii) has dominant 
frequencies /3, v, g; and, ( b )  impingements occur with frequency v. Case (ii) flow 
differs from the unforced case in the following important respects: ( a )  jet shear-layer 
vortices are stronger and are shed further upstream nearer to the channel nozzle; ( b )  
a swaying jet is not as easily discernible as the length of the jet stem varies 
considerably a t  different times; and, (c) /3 is a more dominant frequency. 

Case (iii) results show that :  ( a )  the entire jet appears to  be oscillating with a 
frequency $!3t,, during a time period shorter than that for the unforced case ; (b )  the 
jet is impinging a t  the wedge with frequency St,,; and, (c) three vortices are shed 
from each side of the jet during a jet oscillation which yields another dominant 
frequency $3tos. Case (iii) flow has locked-in to  the dominant frequencies +St,,, St,, 
and :St,,. 

The following statements apply to cases (i)-(iii) based on the results obtained in 
this paper: 

1 .  The high forcing level of cases (i) and (iii) caused: (a )  lock-in of the jet-edge 
system to the forcing frequency St,, (at  both the lower and higher forcing frequencies 
of cases (i) and (iii), respectively), and ( b )  the domination of the forced symmetric 
mode over the inherent, strongly antisymmetrical oscillations of the jet-edge system 
near the channel opening with the symmetric mode domination extending a 
considerable distance downstream of the channel opening for case (iii). For the 
relatively low level of forcing used for case (ii), lock-in of the jet-edge system to the 

to St,,. 
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higher forcing frequency of case (ii) is not achieved and no forced symmetric mode 
domination exists. 

2. Although there is considerable variation of the jet structure among cases (i)-(iii), 
an oscillating or ‘flapping’ jet is preserved in the j e k d g e  system despite the forcing. 
Comparisons of the forced cases (i)-(iii) with each other and with the unforced case 
with regard to earlier (further upstream) vortex formation, pairing and amalgamation 
show results analogous to those shown from comparisons of forced cases with each 
other in Ho & Huerre (1984) where the forcing was applied to  a free shear layer 
emanating from a splitter plate. 

3. For all three cases, the forcing frequency St,, is the dominant component for 
pressure a t  the wedge and jet edge vorticity near the channel nozzle. The wedge 
pressure component St,, for case (iii) is huge with the forced frequency St,, also the 
frequency of impingement. 

4. For all three cases, the additional flow energy provided by the forced, mecha- 
nical, longitudinal oscillations resulted in a significant increase in the number of 
non-zero spectral components beyond that for the corresponding unforced edgetone 
flow. 
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